## $4^{\text {TH }} /$ CIVIL/ 2022(S)

## TH1 Structural Design -I

## Answer any five Questions including Q No.1\& 2 Figures in the right hand margin indicates marks

1. 

a. Define modular ratio.
b. What do you mean by characteristic strength of concrete?
c. How do you determine the minimum depth of foundation?
d. What is curing?
e. Define Limit state. State various types of limit state.
f. Differentiate between one-way and two-way slab.
g. What is the minimum and maximum longitudinal reinforcement permissible in a column?
h. What do you mean by redistribution of moment?
i. Define slenderness ratio. What is its importance?
j. Draw a typical flight and show tread, riser, waist and going.
a. Write about advantages of LSM over WSM?
b. Design a short circular column to carry a service load of 1600 KN use lateral ties and helical reinforcement. The materials are M20 grade concrete and Fe415 steel.
c. Design a square footing for a RCC column $250 \mathrm{~mm} \times 250 \mathrm{~mm}$ carrying a load of 300 KN founded on soil that has SBC of $160 \mathrm{KN} / \mathrm{m}^{2}$ in LSM use M20 and Fe415 steel.
d. A steel bar of 10 mm diameter of Fe 415 grade is embedded in M20 concrete. Calculate its development length in tension and compression ( $\varnothing=90^{\circ}$ ).
e. Derive the stress block parameters for flexure.
f. Write the assumptions made in the limit state of collapse compression.
g Explain in details why Under-reinforced section is preferred than Over reinforced section.
3 Design a simply supported rectangular beam in flexure to resist a factored load of $90 \mathrm{KN} / \mathrm{m}$. Given a clear span of 6 m and the size is limited to $30 \mathrm{~cm} \times 60 \mathrm{~cm}$. Use M20 grade concrete and Fe500 steel.

A RCC beam of span 5 m is 250 mm wide 500 mm deep (effective). It has 4 bars of 22 mm tensile reinforcement. The beam carries a load of $30 \mathrm{KN} / \mathrm{m}$ inclusive of self weight. Design the beam for shear. Use M20 concrete and Fe415 steel.

Design a dog legged staircase for a live load of $3 \mathrm{KN} / \mathrm{m}^{2}$. Rise of the stair is 160 mm and tread is 250 mm , Ceiling height is 3.5 m and width of flight is 150 mm use M20 concrete and Fe415 steel.
Design a simply supported one way roof slab for a room $8 \mathrm{~m} \times 3.5 \mathrm{~m}$ clear in size if superimposed load is $5 \mathrm{KN} / \mathrm{m}^{2}$ use M20 grade concrete a Fe 415 steel.
Design a RCC column to resist axial factored load of 1800KN.Given column length of 3m 10 with both end fixed using M20 grade concrete and Fe415 steel.

## $4^{\text {TH }}$ SEM./CIVIL/2022(S) <br> Th2 Hydraulics and Irrigation Engineering

Full Marks: 80

Time- 3 Hrs
Answer any five Questions including Q No.1\& 2
Figures in the right hand margin indicates marks

1. Answer All questions
a. List out different types of rain gauges.
b. What do you mean by gross command area.
c. Write two benefits of irrigation.
d. What is an aqueduct.
e. Define spillway.
f. Define viscosity and its unit in C.G.S system.
g. What is the difference between laminar flow and turbulent flow.
h. Write down Darcy - Weisbach and Chezy's formula.
i. Differentiate between notch and weir.
j. Define duty of irrigation water.
2. Answer Any Six Questions
a. Define base, delta and duty and derive the relationship between them.
b. Write different types of canal lining. What are the advantages and disadvantages of canal lining.
c. Write down the effects of water logging.
d. Derive continuity equation.
e. Find the loss of head due to friction in a pipe of 1 metre diameter and 15 km long. The velocity of water in the pipe is $1 \mathrm{~meter} / \mathrm{sec}$. Take coefficient of friction as 0.005 .
f. What are the causes of failure of gravity dam.
g The diameter of a pipe at sections 1-1 and 2-2 are 200 mm and 300 mm respectively. If the velocity of water flowing through the pipe at section $1-1$ is $4 \mathrm{~m} / \mathrm{sec}$. Find discharge through the pipe and velocity of water at section 2-2.

3 Explain the types of cross drainage work with neat sketch.
Name the component parts of the diversion head works and state their functions.
5 What is a reciprocating pump? Describe the principle and working of a reciprocating pump with neat sketch.

Figure shows a circular plate of diameter 1.2 m placed vertically in water in such a way that the centre of the plate is 2.5 m below the free surface of water. Determine
(i) Total pressure on the plate
(ii) Position of centre of pressure.

$7 \quad$ The water is flowing through a taper pipe of length 100 m having diameters 600 mm at the upper end and 300 mm at the lower end, at the rate of 50 litres $/ \mathrm{sec}$. The pipe has a slope of 1 in 30 . Find the pressure at the lower end if the pressure at the higher level is $19.62 \mathrm{~N} / \mathrm{cm} 2$.

## $4^{\text {TH }}$ SEM./CIVIL ENGINEERING/ 2022(S)

## TH3 LAND SURVEY-I

Full Marks: 80
Time- 3 Hrs
Answer any five Questions including Q No.1\& 2 Figures in the right hand margin indicates marks

1. Answer All questions
a. What is Simpson's rule for calculation of area in survey?
b. What is parallax?
c. Define latitude and departure of a survey line
d. What is the principle of reciprocal levelling?
e. What is meant by unique identification number of parcel in map preparation?
f. Why optical square is used in surveying?
g. What is a field book? What are the types of field books?
h. Convert the following WCBs to QB
a. $160^{\circ} 25^{\prime}$
b. $285^{\circ} 30^{\prime}$
c. $15^{\circ} 45^{\prime}$
d. $203^{\circ} 30^{\prime}$
i. Define isogonic and agonic lines.
j. Why well conditioned triangles are preferred in chain surveying?
2. Answer Any Six Questions
a. Enlist and explain the function of each instrument used in plane table surveying with neat sketch.
b. Explain about cadastral map preparation methodology.
c. The following offsets were taken from a chain line to an irregular boundary line at an interval of 10 m :
$0,2.50,3.50,5.00,4.60,3.20,0 \mathrm{~m}$
Compute the area between the chain line, the irregular boundary line and the end offsets by (a) The mid-ordinate rule \& (b) The trapezoidal rule.
d. Explain the procedure to set out an angle of $30^{\circ} 40^{\prime} 13^{\prime \prime}$ with theodolite.
e. A 30 m steel tape was standardised at a temperature of $20^{\circ} \mathrm{C}$ and under a pull of 5 kg . The tape was used in catenary at a temperature of $25^{\circ} \mathrm{C}$ and under a pull of 11 kg . The cross sectional area of tape is $0.02 \mathrm{~cm}^{2}$ and its total weight is 660 gm . Find the correct horizontal distance. Take $\mathrm{E}=2 \times 10^{6} \mathrm{~kg} / \mathrm{cm}^{2} \& \alpha=11 \times 10^{-6} /{ }^{\circ} \mathrm{C}$.
f. Explain about characteristics of contours with neat sketch.
g Differentiate between Surveyor Compass and Prismatic Compass.

3 Explain the procedure for solving two point and three point problems in plane table surveying.
4 The following bearings were observed in traversing with a compass in an area where local attraction was suspected. Find the stations affected with local attraction and calculate the correct bearings of lines.

| Line | FB | BB |
| :---: | :---: | :---: |
| AB | $68^{\circ} 15^{\prime}$ | $248^{\circ} 15^{\prime}$ |
| BC | $148^{\circ} 45^{\prime}$ | $326^{\circ} 15^{\prime}$ |
| CD | $224^{\circ} 30^{\prime}$ | $46^{\circ} 00^{\prime}$ |
| DE | $217^{\circ} 15^{\prime}$ | $38^{\circ} 15^{\prime}$ |
| EA | $327^{\circ} 45^{\prime}$ | $147^{\circ} 45^{\prime}$ |

Explain the procedure of chaining to overcome an obstacle where chaining is obstructed but vision is free.
Write the procedure for finding area using Latitude and Double Meridian
Distance method and find out the area of a closed traverse considering following data by Latitude and DMD method

| SIDE | LATITUDE | DEPARTURE |
| :--- | :--- | :--- |
| $A B$ | +225.5 | +120.5 |
| $B C$ | -245.0 | +210.0 |
| $C D$ | -150.5 | -110.5 |
| $D A$ | +170.0 | -220.0 |

The following consecutive readings were taken with a dumpy level along a 10 chain line at a common interval of 15 m .
3.150, 2.245, 1.125, 0.860, 3.125, 2.760, 1.835, 1.470, 1.965, 1.225, 2.390, and 3.035 m .
The first reading was at a chainage of 165 m where RL is 98.085 . The instrument was shifted after the fourth and ninth readings. Find RL of all points using rise-and-fall method.

# TH4 Highway Engineering 

Answer All questions
a. What is camber ?
b. Differentiate between bitumen and tar.
c. What are the objectives of highway planning.
d. Define traffic density?
e. What do you mean by seal coat ?
f. Define base course and wearing course.
g. What is highway alignment?
h. What is function of surface drainage and sub surface drainage?
i. Define transition curve?
j. Define WBM.
2.
a. Calculate the safe stopping sight distance for design speed of 50 kmph for
(i) Two way traffic on a two lane load (ii) Two way traffic on a single lane load. Assume coefficient of friction $=0.35$ \& reaction time $=2.5$ second.
b. Write the objectives of providing transition curve in roads.
c. Explain the necessity of road drainage work.
d. Describe different types of bends in hill roads
e. Write short notes on CBR test.
f. Differentiate flexible and rigid pavement.
g Calculate the allowable speed on a horizontal curve of radius 180 m . Assume the coefficient of lateral friction as 0.15 and maximum super elevation of 1 in 15.

What is soil stabilization, briefly explain cement stabilization?
(a)What is highway drainage?
(b)Explain surface drainage and subsurface drainage systems in road.

Explain typical flexible pavement failures in detail.
Explain the total reaction time for a driver.
Write short notes on:
(a) Mud pumping.
(b) Super elevation
(c) National Highways
(b) Kerbs

## $4^{\text {TH }}$ SEM. / CIVIL ./ 2023(S) <br> TH-1 Structural Design-I

Full Marks: 80
Time- 3 Hrs
Answer any five Questions including Q No.1\& 2
Figures in the right hand margin indicates marks

1. Answer All questions $2 \times 10$
a. What is limit state of serviceability.
b. Write the factor of safety for steel and concrete in WSM.
c. What is development length ?
d. What is the maximum compressive stress rectangular beam ?
e. Why doubly reinforced section is used over singly reinforced section?
f. Differentiate between one-way and two-way slab.
g. What do you mean by moment of resistance?
h. What do you mean by side face reinforcement?
i. Differentiate between column and pedestal.
j. What is the minimum and maximum amount of longitudinal reinforcement permissible in a Column?
2. Answer Any Six Questions $6 \times 5$
a. A R.C.C. beam $250 \mathrm{~mm} \times 500 \mathrm{~mm}$ has a clear span of 5.5 m . The beam has $2-20 \mathrm{~mm}$ diameter bars going into the support. Factored shear force is 140 KN . Check for the development length if Fe 415 steel and M20 concrete is used.
b. Write the assumptions taken in WSM ?
c. Design a short R.C.C column to carry an axial load of 1600 KN . It is 4 m long, effectively held in position and restrained against rotation at both ends. Use M-25 concrete and $\mathrm{Fe}-415$ steel.
d. Find the moment of a beam having width as 300 mm and effective depth as 550 mm . The permissible stress in concrete in bending compression and steel in tension are respectively $5.6 \mathrm{~N} / \mathrm{mm}^{2}$ and $210 \mathrm{~N} / \mathrm{mm}^{2}$.
e. A singly reinforced beam rectangular beam of width 250 mm and 460 mm effective depth is reinforced with 3 nos of 16 mm diameter bars. Find out the moment of resistance of the section.
f. Explain the terms: balanced, under reinforced and over reinforced sections. State the different methods of design of concrete structure and explain it.

Design an R.C.C. beam of width 230 mm and effective depth of 500 mm subjected to a factored moment of 200 KNm . Find the reinforcement required.Use M20 concret and Fe 415 steel.

Design a simply supported T beam of 6 m span ,the slab thickness is $100 \mathrm{~mm} \& 10$ characteristics load including self weight of the beam is $24 \mathrm{KN} / \mathrm{m}$, given width of support and width of beam as $250 \mathrm{~mm} \& 230 \mathrm{~mm}$, use M20 and Fe415 steel.
Design a square footing of uniform thickness for an axially loaded column of $450 \mathrm{~mm} \times 450 \mathrm{~mm}$ size. The safe bearing capacity of soil is $190 \mathrm{KN} / \mathrm{m}^{2}$.

Load on column is 850 KN . Use M20 concrete and Fe415 steel.
Design a two way slab for an office floor of size 3.5 m by 4.5 m with discontinuous and simply supported edges on all the sides with corners prevented from lifting and supporting a service load of $4 \mathrm{kn} / \mathrm{m}^{2}$ adopt M20 grade concrete and Fe 415 bars. Design a dog legged staircase for a live load of $5 \mathrm{KN} / \mathrm{m}^{2}$ rise of the stair is $150 \mathrm{~mm} \quad 10$ and tread is 250 mm . Ceiling height is 3.6 m and width of flight is 150 mm use M20 concrete and Fe 415 steel.

## $4^{\text {TH }}$ SEM. / CIVIL / 2023(S)

## TH-2 Hydraulics and Irrigation Engineering

Answer any five Questions including Q No.1\& 2
Figures in the right hand margin indicates marks

1. Answer All questions
a. Define Viscosity and write down its unit in C.G.S system.
b. Define density and its unit.
c. Write down the relationship between atmospheric pressure, absolute pressure and gauge pressure.
d. What is the mechanical efficiency of a centrifugal pump? Write down its mathematical formula.
e. Write down the assumptions of Bernoulli's equation.
f. What is meant by surface and sub-surface irrigation.
g. What is crop season.
h. Differentiate between GCA and CCA.
i. Write down Dicken's and Ryve's formula for estimation of flood discharge.
j. What is meant by "runoff".
2. Answer Any Six Questions.
a. Derive expression for total pressure exerted on vertical surface.
b. Find the head loss due to friction in a pipe of diameter 300 mm and of length 50 m through which water is flowing at a velocity of $3 \mathrm{~m} / \mathrm{sec}$ by using (i) Darcy's formula,(ii) Chezy's formula for which take $\mathrm{C}=60$.
c. Describe briefly the operation of reciprocating pump.
d. Describe hydrological cycle with a neat sketch.
e. Define base, delta and duty and derive the relationship between them.
f. Discuss at least two remedies adopted for water logging.
g. What is meant by cross drainage work. Explain it's necessity.

3 A pipe line carrying oil of specific gravity 0.87 , changes in diameter from 200 mm diameter at a piston (A) to 500 mm diameter at a piston (B) which is 4 m at a higher level.If the pressure at " A " and " B " are $9.81 \mathrm{~N} / \mathrm{cm} 2$ and $5.886 \mathrm{~N} / \mathrm{cm} 2$ respectively. The discharge is $200 \mathrm{~m} 3 / \mathrm{sec}$. Determine the loss of head \& direction of flow.

4 A simple U-tube manometer containing mercury is connected to a pipe in which an oil of specific gravity 0.8 is flowing. The pressure in the pipe is vacuum. The other end of the manometer is open to the atmosphere. Find the vacuum pressure in pipe if the difference of mercury level in the two limbs is 20 cm and height of oil in the left limb from the centre of the pipe is 15 m below.

5 Explain in detail the various causes of failure of an Earthen Dam with sketches.
6 Draw a general layout of a barrage. Also explain the functions of different parts.
7 Describe the methods to prevent water logging.

## $4^{\text {TH }}$ SEM ./ CIVIL./ 2023(S) <br> TH-3 LAND SURVEY - I

Full Marks: 80
Time- 3 Hrs

## Answer any five Questions including Q No.1\& 2 <br> Figures in the right hand margin indicates marks

## 1. Answer All questions

$2 \times 10$
a. Name different types of chain, which are used in surveying.
b. What is local attraction and how it is detected?
c. What is the principle of chain surveying?
d. Draw the conventional symbol of temple and level crossing.
e. What is cadastral surveying?
f. What is the least count of a transit theodolite?
g. What is temporary bench mark?
h. When do you apply resection method in plane table surveying.
i. What are the sources of error in chain surveying?
j. Define line of collimation.
2. Answer Any Six Questions
a. Explain the errors in chaining.
b. The bearings were observed during traversing $182^{\circ} 35^{\prime}$ and $126^{\circ} 30^{\prime}$. If the declination at the place is known to be $1^{\circ} 40^{\prime} \mathrm{E}$. Then find the bearings of the line.
c. A steel tape 20 m long, standardised at $15^{\circ} \mathrm{C}$ with a pull of 10 kg was used to measure distance along a slope of $4^{\circ} 25^{\prime}$. If the mean temperature during the measurement was $10^{\circ} \mathrm{C}$ and pull applied 16 kg , determine the correction required per tape length. Assume coefficient of expansion $=112 \mathrm{X} 10^{-7}$ per ${ }^{\circ} \mathrm{C}$, cross sectional area of tape $=0.08 \mathrm{~cm}^{2}$ and Young's Modulus $\mathrm{E}=$ $2.1 \mathrm{X} 10^{6} \mathrm{~kg} / \mathrm{cm}^{2}$.
d. Distinguish between rise fall method and height of instrument method.
e. Write down the different characteristics of contours.
f. Define W.C.B. and Q.B in compass surveying.
g. Write the Bowditch rule for balancing a traverse.

The following offsets were taken from a chain line to a hedge:

| Distance <br> in meter | 0 | 10 | 20 | 30 | 40 | 60 | 80 | 100 | 120 | 140 | 160 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Offset <br> in meter | 0 | 2 | 2.5 | 2.2 | 3 | 3.4 | 2.8 | 2.6 | 3.2 | 2.9 | 2.7 |

4 What are different methods of plane tabling? Describe any one method in detail.
The following observations were made during the testing of a level.

| Instrument at | Staff reading at station |  |
| :--- | :--- | :--- |
|  | A | B |
| A | 1.225 | 1.375 |
| B | 0.850 | 0.500 |

RL of station A is known to be 356.5. Calculate the RL of station B. Also calculate the error in line of collimation and state clearly whether it is inclined upwards or downwards.

Find the area of closed traverse by calculation of area by co-ordinate method.

| Line | Latitude | Departure |
| :--- | :--- | :--- |
| AB | +225.5 | +120.5 |
| BC | -245.0 | +240.0 |
| CD | -180.5 | -140.5 |
| DA | +200.0 | -220.0 |

The bearings observed at the stations of a closed traverse are given below.

Check whether the bearings are correct. If not, correct the bearings.

| Line | F.B. | B.B. |
| :--- | :--- | :--- |
| AB | $122^{\circ} 15^{\prime}$ | $302^{\circ} 15^{\prime}$ |
| BC | $66^{\circ} 00^{\prime}$ | $243^{\circ} 45^{\prime}$ |
| CD | $308^{\circ} 15^{\prime}$ | $133^{\circ} 00^{\prime}$ |
| DA | $198^{\circ} 00^{\prime}$ | $15^{\circ} 30^{\prime}$ |

## $4^{\text {TH }}$ SEM /CIVIL /2023 (S)

## TH-4 HIGHWAY ENGINEERING

Answer any five Questions including Q No.1\& 2 Figures in the right hand margin indicates marks

## 1. Answer All questions

a. When Indian road congress formed and what was its objective?
b. What is RoW and formation width in Highway?
c. What is Emulsion and write its types.
d. What are Pneumatic tyre and sheep's foot rollers?
e. Draw any two traffic control signals and write their meaning.
f. Write at least four causes of pavement failure.
g. How landslide can be controlled in hilly roads?
h. What is Kerb? Write two functions of it.
i. Calculate the values of ruling minimum radius assuming design speed as 80 km . Assume $e=0.07$ and $f=0.15$.
j. What is necessity of providing cross-drainage works?
2. Answer Any Six Questions
a. Calculate the safe stopping distance for design speed of 60 kmph for (a) two way traffic in two lane road, (b) two way traffic in a single lane road. Assume coefficient of friction as 0.4 and reaction of driver as 3.0 secs.
b. Write briefly, the necessity of providing curves in highway.
c. Elaborate Penetration test of Bitumen with figure.
d. Differentiate between Rigid pavement and Flexible pavement.
e. What is surface drainage and what are the methods for providing it?
f. What is corrugations and discuss its remedial measures.
g Write a short note on Hot-Mix plant.

3 What are the requirements of a good aggregate? Why and how abrasion test is
performed in aggregate?
4 What are the methods of providing super elevation? If the design speed of a
highway is 100 kmph and horizontal curve of radius 180 m on a certain area, calculate super elevation required to maintain this speed. Take coefficient of friction as 0.18 .
What is the purpose of Stabilization? Explain how lime stabilization is carried out in pavements.
6 Draw a neat sketch of flexible pavement showing different layers and give a brief idea about Sub-Grade preparation.
7 Describe failures in Rigid pavement and its maintenance.

